5^2x=1/25

Simple and best practice solution for 5^2x=1/25 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5^2x=1/25 equation:



5^2x=1/25
We move all terms to the left:
5^2x-(1/25)=0
We add all the numbers together, and all the variables
5^2x-(+1/25)=0
We get rid of parentheses
5^2x-1/25=0
We multiply all the terms by the denominator
5^2x*25-1=0
Wy multiply elements
125x^2-1=0
a = 125; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·125·(-1)
Δ = 500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{500}=\sqrt{100*5}=\sqrt{100}*\sqrt{5}=10\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{5}}{2*125}=\frac{0-10\sqrt{5}}{250} =-\frac{10\sqrt{5}}{250} =-\frac{\sqrt{5}}{25} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{5}}{2*125}=\frac{0+10\sqrt{5}}{250} =\frac{10\sqrt{5}}{250} =\frac{\sqrt{5}}{25} $

See similar equations:

| 3y=7=y+13 | | 24n=11n+80 | | 10x-41=6x+47 | | (x=6)3=-6 | | 9z+10=1-(5-3z) | | 4x^2-1=-2x+5 | | -9x1=-80 | | 2x-4(x-4)=-6+4x-14 | | 1/2g/84=P/932 | | 1/3x+2=1/2x-5 | | 2x-178=11x+92 | | x-9=76 | | 3^4x-1=5 | | 5n-7=5n-10+3 | | 4x+5(-3x+16)=179 | | 8-3(p-5)=-2 | | 1/2(x-8)=3/2x+7 | | 68-35=3x+53 | | -23.4=r-15.7 | | 7=8+10x+20x^2 | | 4/6x-12-18/6x-12=1/2 | | 68-35+3x+53=180 | | 6x^2+18x-166=2 | | -7x-9=24 | | 5x-3(x-4)=-3+5x-9 | | 2x-7=2/3x+10 | | 3z/7-3=-5 | | 16x-9-(13-9x)+17=15x-22-(7-4x) | | 4/6x-12-3/x-2=1/2 | | 5y²-27y+30=0 | | 2+3x=-4x+1 | | 2x+4÷3=10 |

Equations solver categories